Computers

XML and Web Technologies for Data Sciences with R

XML and Web Technologies for Data Sciences with R

Author: Deborah Nolan

Publisher: Springer

ISBN: 1461478995

Category: Computers

Page: 663

View: 446

Web technologies are increasingly relevant to scientists working with data, for both accessing data and creating rich dynamic and interactive displays. The XML and JSON data formats are widely used in Web services, regular Web pages and JavaScript code, and visualization formats such as SVG and KML for Google Earth and Google Maps. In addition, scientists use HTTP and other network protocols to scrape data from Web pages, access REST and SOAP Web Services, and interact with NoSQL databases and text search applications. This book provides a practical hands-on introduction to these technologies, including high-level functions the authors have developed for data scientists. It describes strategies and approaches for extracting data from HTML, XML, and JSON formats and how to programmatically access data from the Web. Along with these general skills, the authors illustrate several applications that are relevant to data scientists, such as reading and writing spreadsheet documents both locally and via Google Docs, creating interactive and dynamic visualizations, displaying spatial-temporal displays with Google Earth, and generating code from descriptions of data structures to read and write data. These topics demonstrate the rich possibilities and opportunities to do new things with these modern technologies. The book contains many examples and case-studies that readers can use directly and adapt to their own work. The authors have focused on the integration of these technologies with the R statistical computing environment. However, the ideas and skills presented here are more general, and statisticians who use other computing environments will also find them relevant to their work. Deborah Nolan is Professor of Statistics at University of California, Berkeley. Duncan Temple Lang is Associate Professor of Statistics at University of California, Davis and has been a member of both the S and R development teams.
Computers

XML and Web Technologies for Data Sciences with R

XML and Web Technologies for Data Sciences with R

Author: Deborah Nolan

Publisher: Springer Science & Business Media

ISBN: 9781461479000

Category: Computers

Page: 663

View: 477

Web technologies are increasingly relevant to scientists working with data, for both accessing data and creating rich dynamic and interactive displays. The XML and JSON data formats are widely used in Web services, regular Web pages and JavaScript code, and visualization formats such as SVG and KML for Google Earth and Google Maps. In addition, scientists use HTTP and other network protocols to scrape data from Web pages, access REST and SOAP Web Services, and interact with NoSQL databases and text search applications. This book provides a practical hands-on introduction to these technologies, including high-level functions the authors have developed for data scientists. It describes strategies and approaches for extracting data from HTML, XML, and JSON formats and how to programmatically access data from the Web. Along with these general skills, the authors illustrate several applications that are relevant to data scientists, such as reading and writing spreadsheet documents both locally and via Google Docs, creating interactive and dynamic visualizations, displaying spatial-temporal displays with Google Earth, and generating code from descriptions of data structures to read and write data. These topics demonstrate the rich possibilities and opportunities to do new things with these modern technologies. The book contains many examples and case-studies that readers can use directly and adapt to their own work. The authors have focused on the integration of these technologies with the R statistical computing environment. However, the ideas and skills presented here are more general, and statisticians who use other computing environments will also find them relevant to their work. Deborah Nolan is Professor of Statistics at University of California, Berkeley. Duncan Temple Lang is Associate Professor of Statistics at University of California, Davis and has been a member of both the S and R development teams.
Business & Economics

Data Science in R

Data Science in R

Author: Deborah Nolan

Publisher: CRC Press

ISBN: 9781498759878

Category: Business & Economics

Page: 539

View: 620

Effectively Access, Transform, Manipulate, Visualize, and Reason about Data and ComputationData Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving illustrates the details involved in solving real computational problems encountered in data analysis. It reveals the dynamic and iterative process by which data analysts
Computers

Web and Network Data Science

Web and Network Data Science

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 9780133887648

Category: Computers

Page: 384

View: 114

Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.
Business & Economics

Marketing Data Science

Marketing Data Science

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 9780133887341

Category: Business & Economics

Page: 225

View: 829

Now , a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.
Computers

Data Wrangling with R

Data Wrangling with R

Author: Bradley C. Boehmke, Ph.D.

Publisher: Springer

ISBN: 9783319455990

Category: Computers

Page: 238

View: 118

This guide for practicing statisticians, data scientists, and R users and programmers will teach the essentials of preprocessing: data leveraging the R programming language to easily and quickly turn noisy data into usable pieces of information. Data wrangling, which is also commonly referred to as data munging, transformation, manipulation, janitor work, etc., can be a painstakingly laborious process. Roughly 80% of data analysis is spent on cleaning and preparing data; however, being a prerequisite to the rest of the data analysis workflow (visualization, analysis, reporting), it is essential that one become fluent and efficient in data wrangling techniques. This book will guide the user through the data wrangling process via a step-by-step tutorial approach and provide a solid foundation for working with data in R. The author's goal is to teach the user how to easily wrangle data in order to spend more time on understanding the content of the data. By the end of the book, the user will have learned: How to work with different types of data such as numerics, characters, regular expressions, factors, and dates The difference between different data structures and how to create, add additional components to, and subset each data structure How to acquire and parse data from locations previously inaccessible How to develop functions and use loop control structures to reduce code redundancy How to use pipe operators to simplify code and make it more readable How to reshape the layout of data and manipulate, summarize, and join data sets
Computers

Mastering Data Analysis with R

Mastering Data Analysis with R

Author: Gergely Daroczi

Publisher: Packt Publishing Ltd

ISBN: 9781783982035

Category: Computers

Page: 396

View: 352

Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization About This Book Handle your data with precision and care for optimal business intelligence Restructure and transform your data to inform decision-making Packed with practical advice and tips to help you get to grips with data mining Who This Book Is For If you are a data scientist or R developer who wants to explore and optimize your use of R's advanced features and tools, this is the book for you. A basic knowledge of R is required, along with an understanding of database logic. What You Will Learn Connect to and load data from R's range of powerful databases Successfully fetch and parse structured and unstructured data Transform and restructure your data with efficient R packages Define and build complex statistical models with glm Develop and train machine learning algorithms Visualize social networks and graph data Deploy supervised and unsupervised classification algorithms Discover how to visualize spatial data with R In Detail R is an essential language for sharp and successful data analysis. Its numerous features and ease of use make it a powerful way of mining, managing, and interpreting large sets of data. In a world where understanding big data has become key, by mastering R you will be able to deal with your data effectively and efficiently. This book will give you the guidance you need to build and develop your knowledge and expertise. Bridging the gap between theory and practice, this book will help you to understand and use data for a competitive advantage. Beginning with taking you through essential data mining and management tasks such as munging, fetching, cleaning, and restructuring, the book then explores different model designs and the core components of effective analysis. You will then discover how to optimize your use of machine learning algorithms for classification and recommendation systems beside the traditional and more recent statistical methods. Style and approach Covering the essential tasks and skills within data science, Mastering Data Analysis provides you with solutions to the challenges of data science. Each section gives you a theoretical overview before demonstrating how to put the theory to work with real-world use cases and hands-on examples.
Computers

Machine Learning with R

Machine Learning with R

Author: Abhijit Ghatak

Publisher: Springer

ISBN: 9789811068089

Category: Computers

Page: 210

View: 933

This book helps readers understand the mathematics of machine learning, and apply them in different situations. It is divided into two basic parts, the first of which introduces readers to the theory of linear algebra, probability, and data distributions and it’s applications to machine learning. It also includes a detailed introduction to the concepts and constraints of machine learning and what is involved in designing a learning algorithm. This part helps readers understand the mathematical and statistical aspects of machine learning. In turn, the second part discusses the algorithms used in supervised and unsupervised learning. It works out each learning algorithm mathematically and encodes it in R to produce customized learning applications. In the process, it touches upon the specifics of each algorithm and the science behind its formulation. The book includes a wealth of worked-out examples along with R codes. It explains the code for each algorithm, and readers can modify the code to suit their own needs. The book will be of interest to all researchers who intend to use R for machine learning, and those who are interested in the practical aspects of implementing learning algorithms for data analysis. Further, it will be particularly useful and informative for anyone who has struggled to relate the concepts of mathematics and statistics to machine learning.
Computers

Cognitive Computing Using Green Technologies

Cognitive Computing Using Green Technologies

Author: Asis Kumar Tripathy

Publisher: CRC Press

ISBN: 9781000337884

Category: Computers

Page: 296

View: 504

Cognitive Computing is a new topic which aims to simulate human thought processes using computers that self-learn through data mining, pattern recognition, and natural language processing. This book focuses on the applications of Cognitive Computing in areas like Robotics, Blockchain, Deep Learning, and Wireless Technologies. This book covers the basics of Green Computing, discusses Cognitive Science methodologies in Robotics, Computer Science, Wireless Networks, and Deep Learning. It goes on to present empirical data and research techniques, modelling techniques and offers a data-driven approach to decision making and problem solving. This book is written for researchers, academicians, undergraduate and graduate students, and industry persons who are working on current applications of Cognitive Computing.
Political Science

The SAGE Handbook of Research Methods in Political Science and International Relations

The SAGE Handbook of Research Methods in Political Science and International Relations

Author: Luigi Curini

Publisher: SAGE

ISBN: 9781526486417

Category: Political Science

Page: 1289

View: 462

The SAGE Handbook of Research Methods in Political Science and International Relations offers a comprehensive overview of the field and its research processes through the empirical and research scholarship of leading international authors.
Technology & Engineering

Information and Communication Technology for Intelligent Systems (ICTIS 2017) - Volume 2

Information and Communication Technology for Intelligent Systems (ICTIS 2017) - Volume 2

Author: Suresh Chandra Satapathy

Publisher: Springer

ISBN: 9783319636450

Category: Technology & Engineering

Page: 666

View: 829

This volume includes 73 papers presented at ICTIS 2017: Second International Conference on Information and Communication Technology for Intelligent Systems. The conference was held on 25th and 26th March 2017, in Ahmedabad, India and organized jointly by the Associated Chambers of Commerce and Industry of India (ASSOCHAM) Gujarat Chapter, the G R Foundation, the Association of Computer Machinery, Ahmedabad Chapter and supported by the Computer Society of India Division IV – Communication and Division V – Education and Research. The papers featured mainly focus on information and communications technology (ICT) and its applications in intelligent computing, cloud storage, data mining and software analysis. The fundamentals of various data analytics and algorithms discussed are useful to researchers in the fiel d.
Computers

Computational Science – ICCS 2018

Computational Science – ICCS 2018

Author: Yong Shi

Publisher: Springer

ISBN: 9783319936987

Category: Computers

Page: 730

View: 377

The three-volume set LNCS 10860, 10861 + 10862 constitutes the proceedings of the 18th International Conference on Computational Science, ICCS 2018, held in Wuxi, China, in June 2018. The total of 155 full and 66 short papers presented in this book set was carefully reviewed and selected from 404 submissions. The papers were organized in topical sections named: Part I: ICCS Main Track Part II: Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging ManYcore Systems; Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Data, Modeling, and Computation in IoT and Smart Systems; Track of Data-Driven Computational Sciences; Track of Mathematical-Methods-and-Algorithms for Extreme Scale; Track of Multiscale Modelling and Simulation Part III: Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Papers